楊振寧、李政道的傑作

09-28

對稱性原理是宇宙世界的根本原理之一,它比牛頓定律、能量守恒定律還要重要。但是華裔物理學傢李政道和楊振寧發現,在粒子世界,物質的對稱性被打破瞭——假如粒子照鏡子鏡裡鏡外的粒子居然不一樣!物理學的一個根本原理就此被改變 !

對著鏡子瞧瞧自己,假如你向上跳起,你在鏡子裡的影像卻向下移動,你一定會目瞪口呆,

甚至有一種毛骨悚然的感覺!幸運的是,世界上還沒有人遇到過這種事。不過這麼奇怪的事真的在粒子世界裡出現瞭,具體地說,是在一個基本粒子身上出現瞭。

這個鏡像不對稱的問題,可不是一個簡單的問題,它是 20 世紀物理學研究的一個重大課題。

對稱總是完美的

你照著鏡子,你與鏡子裡的影像形成瞭一種對稱關系。對稱,不僅是在鏡子裡出現,在我們身邊的大自然裡,也隨處可見。蜂巢是由一個個正六邊形對稱排列組合而成的建築物,每個正六邊形大小統一、上下左右距離相等,這種結構最緊密有序,也最節省材料;蝴蝶左右翅膀的結構是對稱的,就連翅膀上的圖案與顏色也是對稱的,因此它能夠成為自然界最美麗的昆蟲;所有的海螺都擁有奇妙的左右旋對稱;人本身也是對稱的,而且不止外觀左右對稱,雙眼、雙耳和左右腦的形狀也是對稱的。設想一個人少一隻眼、或嘴歪在一邊,那一定被認為不是很美的。

人類自古以來就對對稱美推崇備至,對稱的概念幾乎已經滲透到所有的學科領域。建築學中,建築傢們在規劃、設計和建造形形色色的建築時,總是離不開對稱,那些流傳千古的著名建築物也大多是極具對稱美的,比如中國的故宮、天壇、頤和園的長廊,埃及的大金字塔,羅馬的角鬥場。幾何學中,有圓、橢圓、正方形、正三角形、圓錐、圓柱等各種對稱形狀。代數中,有一元二次方程兩個根的對稱、方程的對稱函數,甚至還有專門關於對稱性的數學理論——群論。

在晶體學中,對稱性表現得尤為突出。其實,自然界中百分之百完全對稱的東西極少,但晶體是個例外,無論從宏觀還是微觀來看,晶體都是嚴格對稱的。晶體中的原子數目很大而且有嚴格的空間排列,如果任意畫出一部分原子排列圖,無論對此圖進行平移、旋轉還是左右互換,所得的圖像與原圖像都無法區分,也就是說,大部分晶體都具有平移對稱、旋轉對稱、鏡像對稱的性質。比如,雪花具有六重旋轉對稱,就是說,雪花晶體在沿一根固定的軸旋轉 60 度、120 度、180 度、240 度、300 度或 360 度後,其原子的空間排佈都與原來的排佈完全相同。

物理學中的對稱

實際上,在物理學中,對稱的概念絕對不隻是 " 左右相同 ",它比我們通常所理解的含義要廣泛得多,幾乎適用於一切自然現象——從宇宙的產生到每個微觀的亞核反應過程。在物理學中,使物體從一種情況變化到另一種情況叫做變換。如果一個變換使物體的情況沒有發生變化,就可以說這個物體對於這一變換是對稱的,這個變換稱為物體的對稱變換。

把左邊的東西和右邊的東西互換一下,而沒有任何變化,這就叫做鏡像對稱,意思就是像照鏡子一樣,鏡子裡和鏡子外的事物是一樣的。人體和動物形體大多是鏡像對稱的,中國的天安門、天壇等建築也是鏡像對稱的。

在空間裡,沿著任何方向平移一單元,如果平移後的圖像與原圖無法區分(即完全重合),而且這種操作可繼續下去,這就是平移對稱。規整的網格就具有平移對稱性,在自然界中,蜂巢、竹節或串珠都具有平移對稱性。

把一個質地均勻的球繞球心旋轉任意角度,它的形狀、大小、質量、密度分佈等等,所有的性質都保持不變,這就是旋轉對稱。一朵有 5 片相同花瓣的花(比如梅花和紫荊花)繞垂直花面的軸旋轉 2π/5 或 2π/5 整數倍角度,旋轉前後完全是一樣的,沒有什麼變化,我們就說它具有 2π/5 旋轉對稱性。反過來說,如果一個球的邊緣上有一個點或有些殘缺,這個點或殘缺就能區分旋轉前後的情況,它就不具有旋轉對稱性瞭——或者說它的旋轉對稱性是破缺的。

以上說的都是物體的外在形體的對稱。物理學中還有一類更重要的對稱:物理規律的對稱。就拿牛頓定律來說吧,無論怎麼轉動物體,物體的運動都遵從牛頓定律,因此,牛頓定律具有旋轉對稱性;鏡子裡和鏡子外物體的運動都遵從牛頓定律,牛頓定律又具有鏡像對稱性;物體在空間任意移動後,牛頓定律仍然有效,牛頓定律也具有空間平移對稱性;在不同的時間,昨天、今天或明天,物體的運動也都遵從牛頓定律,牛頓定律還具有時間平移對稱性⋯⋯其他已知的物理定律也都有類似的性質。

物理學傢們一向對對稱性有著特殊的興趣。對稱性常常使得我們可以不必精確地求解就可以獲得一些知識,使問題得以簡化。例如,一個無阻力的單擺擺動起來,其左右是對稱的,因此,不必求解就可以知道,向左邊擺動的高度與向右邊擺邊的高度一定是相等的,從正中間擺動到左邊最高點的時間一定等於擺動到右邊最高點的時間,左右兩邊相應位置處單擺的速度和加速度也一定是相同的⋯⋯

對稱與守恒的關系

物理定律的這些對稱性其實也意味著物理定律在各種變換條件下的不變性,由物理定律的不變性,我們可以得到一種不變的物理量,叫守恒量,或叫不變量。例如,空間旋轉最重要的參量是角動量,如果一個物體是空間旋轉對稱的,它的角動量必定是守恒的,因此,空間旋轉對稱對應於角動量守恒定律。再如,50 萬噸水從 1000 米的高處落下,形成瀑佈,如果把瀑佈水流功率全部變成電能,在任何時候,同樣的水流的發電功率都是一樣的,這個能量不會隨時間的改變而改變,因此,時間平移對稱對應於能量守恒。還有,空間平移對稱對應於動量守恒,電荷共軛對稱對應於電量守恒,如此等等。

物理定律的守恒性具有極其重要的意義,有瞭這些守恒定律,自然界的變化就呈現出一種簡單、和諧、對稱的關系,也就變得易於理解瞭。所以,科學傢在科學研究中,對守恒定律有一種特殊的熱情和敏感,一旦某一個守恒定律被公認以後,人們是極不情願把它推翻的。

因此,當我們明白瞭各種對稱性與物理量守恒定律的對應關系後,也就明白瞭對稱性原理的重要意義,我們無法設想:一個沒有對稱性的世界,物理定律也變動不定,那該是一個多麼混亂、令人手足無措的世界!

物理定律對稱性與物理量守恒定律的對應關系,是德國女數學傢艾米 · 諾特在 1918 年首先發現的,因此被稱為 " 諾特定理 "。自那以後,物理學傢們就形成瞭這樣一種思維定式:隻要發現瞭一種新的對稱性,就要去尋找相應的守恒定律;反之,隻要發現瞭一條守恒定律,也總要把相應的對稱性找出來。

諾特定理將物理學中 " 對稱 " 的重要性推到瞭前所未有的高度。不過,物理學傢們似乎還不滿足,1926 年,又有人提出瞭宇稱守恒定律,把對稱和守恒定律的關系進一步推廣到微觀世界。

什麼是宇稱守恒?

讓我們先來瞭解一下 " 宇稱守恒 " 的含義。" 宇稱 ",就是指一個基本粒子與它的 " 鏡像 " 粒子完全對稱。人在照鏡子時,鏡中的影像和真實的自己總是具有完全相同的性質——包括容貌、裝扮、表情和動作。同樣,一個基本粒子與它的 " 鏡像 " 粒子的所有性質也完全相同,它們的運動規律也完全一致,這就是 " 宇稱守恒 "。假如一個粒子順時針旋轉,它的鏡像粒子從鏡中看起來就是逆時針旋轉,但是這兩個旋轉粒子的所有運動定律都是相同的,因此,鏡內境外的粒子是宇稱守恒的。

在某種意義上,我們可以把同一種粒子理解成互為鏡像的。假設一個電子順時針方向自旋,另一個電子逆時針方向自旋,一個電子就可以把另一個電子當成鏡像中的自己,就像人通過鏡子看自己一樣。由此推斷,根據宇稱守恒理論,所有電子自身環境和鏡像環境中都應該遵循同樣的物理定律,其他粒子的情況也是如此。

聽起來,所謂的 " 宇稱守恒 " 似乎並沒有什麼特別之處,至少在 1926 年之前,早已有人提出瞭牛頓定律具有鏡像對稱性。不過,以前科學傢們提出的那些具有鏡像對稱的物理定律大多是宏觀的,而宇稱守恒則是針對組成宇宙間所有物質的最基本的粒子。如果這種物質最基本層面的對稱能夠成立,那麼對稱就成為宇宙物質的根本屬性。

事實上,宇稱守恒理論的確在幾乎所有的領域都得到瞭驗證——隻除瞭弱力。我們知道,現代物理將物質間的相互作用力分為四種:引力、電磁力、強力和弱力。在強力、電磁力和引力作用的環境中,宇稱守恒理論都得到瞭很好的驗證:正如我們通常認為的那樣,粒子在這三種環境下表現出瞭絕對的、無條件的對稱。

在普通人眼中,對稱是完美世界的保證;在物理學傢眼中,宇稱守恒如此合乎科學理想。於是,弱力環境中的宇稱守恒雖然未經驗證,也理所當然地被認為遵循宇稱守恒規律。

李、楊的真知灼見

然而,真理終究要自己站出來說話。1956 年,兩位美籍華裔物理學傢——李政道和楊振寧——大膽地對 " 完美的對稱世界 " 提出瞭挑戰,矛頭直指宇稱守恒定律,這成為上世紀物理學界最震撼的事件之一。引發這次震撼事件的最直接原因,是讓學者們困惑良久的 "θ-τ 之謎 ",它是宇稱守恒定律繞不過去的坎。20 世紀 50 年代初,科學傢們從宇宙射線裡觀察到兩種新的介子(即質量介於質子和電子之間的粒子):θ 和 τ。這兩種介子的自旋、質量、壽命、電荷等完全相同,很多人都認為它們是同一種粒子。但是,它們卻具有不同的衰變模式(衰變就是指高能的不穩定粒子轉化成低能的穩定粒子),θ 衰變時會產生兩個 π 介子,τ 則衰變成三個 π 介子,這說明它們遵循著不同的運動規律。

假使 τ 和 θ 是不同的粒子,它們怎麼會具有一模一樣的質量和壽命呢?而如果承認它們是同一種粒子,二者又怎麼會具有完全不一樣的運動規律呢?

為瞭解決這一問題,物理學界曾提出過各種不同的想法,但都沒有成功。物理學傢們都小心翼翼地繞開瞭 " 宇稱不守恒 " 這個可能。

1956 年,李政道和楊振寧在深入細致地研究瞭各種因素之後,大膽地斷言:τ 和 θ 是完全相同的同一種粒子(後來被稱為 K 介子),但在弱相互作用的環境中,它們的運動規律卻不一定完全相同,通俗地說,這兩個相同的粒子如果互相照鏡子的話,它們的衰變方式在鏡子裡和鏡子外居然不一樣!用科學語言來說,"θ-τ" 粒子在弱相互作用下是宇稱不守恒的。李政道和楊振寧的觀點震動瞭當時的物理學界,他們把完美的物理學對稱世界撕出瞭一個缺口!

吳健雄的卓越實驗

最初,"θ-τ" 粒子隻是被作為一個特殊例外,此後不久,同為華裔的實驗物理學傢吳健雄用一個巧妙的實驗驗證瞭 " 宇稱不守恒 ",從此," 宇稱不守恒 " 才真正被承認為一條具有普遍意義的基礎科學原理。吳健雄用兩套實驗裝置觀測鈷 60 的衰變,她在極低溫 ( 0.01K ) 下用強磁場把一套裝置中的鈷 60 原子核自旋方向轉向左旋,把另一套裝置中的鈷 60 原子核自旋方向轉向右旋,這兩套裝置中的鈷 60 互為鏡像。實驗結果表明,這兩套裝置中的鈷 60 放射出來的電子數有很大差異,而且電子放射的方向也不能互相對稱。實驗結果證實瞭弱相互作用中的宇稱不守恒。

我們可以用一個類似的例子來說明問題。假設有兩輛互為鏡像的汽車,汽車 A 的司機坐在左前方座位上,油門踏板在他的右腳附近;而汽車 B 的司機則坐在右前方座位上,油門踏板在他的左腳附近。現在,汽車 A 的司機順時針方向開動點火鑰匙,把汽車發動起來,並用右腳踩油門踏板,使得汽車以一定的速度向前駛去;汽車 B 的司機也做完全一樣的動作,隻是左右交換一下——他逆時針方向開動點火鑰匙,用左腳踩油門踏板。現在,汽車 B 將會如何運動呢?

也許大多數人會認為,兩輛汽車應該以完全一樣的速度向前行駛。遺憾的是,吳健雄的實驗證明瞭,在粒子世界裡,汽車 B 將以完全不同的速度行駛,方向也未必一致!——粒子世界就是這樣不可思議地展現瞭宇稱不守恒。人們把在宏觀世界觀察到的對稱現象應用到微觀世界,明顯犯瞭想當然的錯誤。

三位華裔物理學傢用他們的智慧贏得瞭巨大的聲譽,1957 年,李政道和楊振寧獲得諾貝爾物理學獎,一項科學理論,在發表的第二年就獲得諾貝爾獎是史無前例的。很遺憾的是,用精妙絕倫的實驗證實瞭宇稱不守恒的吳健雄一直沒能獲獎。

究竟為什麼粒子在弱相互作用下會出現宇稱不守恒呢?根本原因至今仍然是個謎。

宇宙源於不對稱

宇稱不守恒的發現並不是孤立的。在微觀世界裡,基本粒子有三個基本的對稱方式:一個是粒子和反粒子互相對稱,即對於粒子和反粒子,定律是相同的,這被稱為電荷(C)對稱;一個是空間反射對稱,即對於一對互為鏡像的粒子來說,它們的運動定律是相同的,這叫宇稱(P);一個是時間反演對稱,即如果我們顛倒粒子的運動方向,粒子的運動規律是相同的,這被稱為時間(T)對稱。

這就是說,如果用反粒子代替粒子、把左換成右,以及讓時間倒流,那麼變換後的物理過程仍遵循同樣的物理定律。

但是,自從宇稱守恒定律被李政道和楊振寧打破後,科學傢很快又發現,粒子和反粒子的行為並不是完全一樣的!一些科學傢進而提出,可能正是由於物理定律存在輕微的不對稱,使粒子的電荷(C)不對稱,導致宇宙大爆炸之初生成的物質比反物質略多瞭一點點,大部分物質與反物質湮滅瞭,剩餘的物質才形成瞭我們今天所認識的世界。如果物理定律嚴格對稱,宇宙大爆炸之後就會誕生數量相同的物質和反物質,但正反物質相遇後就會立即湮滅,在這種情況下,星系、地球乃至人類就都沒有機會形成瞭。

接下來,科學傢發現連時間本身也不再具有對稱性瞭!

可能大多數人原本就認為時光是不可倒流的。日常生活中,時間之箭永遠隻有一個朝向," 逝者如斯 ",老人不能變年輕,打碎的花瓶無法復原,過去與未來的界限涇渭分明。不過,在物理學傢眼中,時間卻一直被視為是可逆轉的。比如說一對光子碰撞產生一個電子和一個正電子,而正負電子相遇則同樣產生一對光子,這兩個過程都符合基本物理學定律,在時間上是對稱的。如果用攝像機拍下其中一個過程然後播放,觀看者將不能判斷錄像帶是在正向還是逆向播放——從這個意義上說,時間沒有瞭方向。

然而,1998 年年末,物理學傢們卻首次在微觀世界中發現瞭違背時間對稱性的事件。歐洲原子能研究中心的科研人員發現,正反 K 介子在轉換過程中存在時間上的不對稱性:反 K 介子轉換為 K 介子的速率要比其逆轉過程——即 K 介子轉變為反 K 介子來得要快。

至此,粒子世界的物理規律的對稱性全部破碎瞭,世界從本質上被證明瞭是不完美的、有缺陷的。

上帝是個左撇子?

當 " 宇稱不守恒 " 在上世紀 50 年代被提出時,大多數人對 " 完美和諧 " 的宇稱守恒定律受到挑戰不以為然。在吳健雄實驗之前,當時著名的理論物理學權威泡利教授甚至說:" 我不相信上帝是一個軟弱的左撇子,我已經準備好一筆大賭註,我敢打賭實驗將獲得對稱的結論。" 然而,嚴謹的實驗證明,泡利教授的這一次賭打輸瞭。

近代微生物學之父巴斯德曾經說過:" 生命向我們顯示的乃是宇宙不對稱的功能。宇宙是不對稱的,生命受不對稱作用支配。" 自然界或許真的不是那麼對稱和完美,大自然除瞭偏愛物質、嫌棄反物質之外,它對左右也有偏好。

自然界的 20 種氨基酸中,有 19 種都存在兩種構型,即左旋型和右旋型。在非生物反應產生氨基酸的實驗中,左旋和右旋兩種類型出現的幾率是均等的,但在生命體中,19 種氨基酸驚人一致地全部呈現左旋型——除瞭極少數低級病毒含有右旋型氨基酸。無疑,生命對左旋型有著強烈的偏愛。

也有人提出,生命起源時,氨基酸呈左旋型其實是隨機的,它不過是順應瞭地球圍繞太陽轉的磁場方向。但大多數科學傢卻認為,左旋型和右旋型的不對稱意味著這兩種能量存在著高低。通常認為,左旋型能量較低,也較穩定,穩定則容易形成生命。

更令人費解的是,雖然構成生命體的蛋白質氨基酸分子都是左旋型的,但組成核酸的核糖和脫氧核糖分子卻都是右旋型的——盡管天然的糖中左旋和右旋的幾率幾乎相同。

看來,上帝對左右真的是有所偏愛,如果事事處處都要達到絕對的平衡對稱," 萬物之靈 " 的生命就不會產生瞭。

不對稱,才有大千世界

從某種意義上來說,正是不對稱創造瞭世界。道理其實很簡,雖然對稱性反映瞭不同物質形態在運動中的共性,但是,隻有對稱性被破壞才能使它們顯示出各自的特性。這正如建築一樣,隻有對稱而沒有對稱的破壞,建築物看上去雖然很規則,但同時卻一定會顯得非常單調和呆板。隻有基本上對稱但又不完全對稱才能構成美的建築。

大自然正是這樣的建築師。當大自然構造像 DNA 這樣的大分子時,總是遵循復制的原則,將分子按照對稱的螺旋結構聯接在一起,構成螺旋形結構的空間排列也是基本相同的。但是在復制過程中,對精確對稱性的細微偏離就會發生新的變化。因此,對稱性被破壞是事物不斷發展進化、變得豐富多彩的原因。

正如德國著名哲學傢萊佈尼茨所說,世界上沒有兩片完全相同的樹葉。仔細觀察樹葉中脈(即樹葉中間的主脈)的細微結構,你會發現,就連同一片葉子兩邊葉脈的數量和分佈、葉緣缺刻或鋸齒的數目和分佈也都是不同的。絕大多數人的面部發育都不對稱,66% 的人左耳稍大於右耳,56% 的人左眼略大,59% 的人右半側臉較大;人的軀幹、四肢也不完全對稱,左肩往往較高,75% 的人右側上肢比左側長。

可以說,生物界裡的不對稱是絕對的,而對稱隻是相對的。實驗研究證明,這是由於細胞內原生質的不對稱性所引起的。從生物體內蛋白質等物質分子結構可以清楚地看到,它們一般呈不對稱的結構形式。科學研究還發現,不對稱原生質的新陳代謝活動能力,比起左右對稱的化學物至少要快三倍。由此可見,不對稱性對生命的進化有著重要的意義。自然界的發展,正是一個對稱性不斷減少的過程。

其實,不僅在自然界,即使在崇尚完美的人類文明中,絕對的對稱也並不討好。一幅看來近似左右對稱的山水畫,能給人以美的享受。但是一幅完全左右對稱的山水畫,則會顯得呆板而缺少生氣,與充滿活力的自然景觀毫無共同之處,根本無美可言。

有時,對對稱性或者平衡性的某種破壞,哪怕是微小破壞,也會帶來不可思議的美妙結果。從這種意義上來說,或許完美並不意味著絕對的對稱,恰恰是對稱的被打破帶來瞭完美。

精彩圖片
文章評論 相關閱讀
© 2016 看看新聞 http://www.kankannews.cc/